|
|       boot.s
|
| boot.s is loaded at 0x7c00 by the bios-startup routines, and moves itself
| out of the way to address 0x90000, and jumps there.
|
| It then loads the system at 0x10000, using BIOS interrupts. Thereafter
| it disables all interrupts, moves the system down to 0x0000, changes
| to protected mode, and calls the start of system. System then must
| RE-initialize the protected mode in it's own tables, and enable
| interrupts as needed.
|
| NOTE! currently system is at most 8*65536 bytes long. This should be no
| problem, even in the future. I want to keep it simple. This 512 kB
| kernel size should be enough - in fact more would mean we'd have to move
| not just these start-up routines, but also do something about the cache-
| memory (block IO devices). The area left over in the lower 640 kB is meant
| for these. No other memory is assumed to be "physical", ie all memory
| over 1Mb is demand-paging. All addresses under 1Mb are guaranteed to match
| their physical addresses.
|
| NOTE1 abouve is no longer valid in it's entirety. cache-memory is allocated
| above the 1Mb mark as well as below. Otherwise it is mainly correct.
|
| NOTE 2! The boot disk type must be set at compile-time, by setting
| the following equ. Having the boot-up procedure hunt for the right
| disk type is severe brain-damage.
| The loader has been made as simple as possible (had to, to get it
| in 512 bytes with the code to move to protected mode), and continuos
| read errors will result in a unbreakable loop. Reboot by hand. It
| loads pretty fast by getting whole sectors at a time whenever possible.
| 1.44Mb disks: sectors = 18
| 1.2Mb disks:
| sectors = 15
| 720kB disks:
| sectors = 9

.globl begtext, begdata, begbss, endtext, enddata, endbss
.text
begtext:
.data
begdata:
.bss
begbss:
.text

BOOTSEG = 0x07c0
INITSEG = 0x9000
SYSSEG  = 0x1000                | system loaded at 0x10000 (65536).
ENDSEG  = SYSSEG + SYSSIZE      | SYSSIZE在Makefile中定义的 ^_^

entry start
start:
        mov     ax,#BOOTSEG     | 现在应仍处在REAL MODE下.
        mov     ds,ax           | 移动自身从BOOTSEG:0000到INITSEG:0000
        mov     ax,#INITSEG     | 共512字节.
        mov     es,ax           | 那么BOOT.S处在0x90000-0x90200.
        mov     cx,#256
        sub     si,si
        sub     di,di
        rep
        movw
        jmpi    go,INITSEG
go:     mov     ax,cs
        mov     ds,ax           | 将DS,ES,SS均设为0x9000,所有数据都以
        mov     es,ax           | 0x9000为段偏移.
        mov     ss,ax           | 堆栈偏移0x9000
        mov     sp,#0x400       | 栈顶指针0x9000:0x0400,堆栈空间512bytes??
        mov     ah,#0x03        | read cursor pos
        xor     bh,bh
        int     0x10
        mov     cx,#24
        mov     bx,#0x0007      | page 0, attribute 7 (normal)
        mov     bp,#msg1        | 显示Loading System ...
        mov     ax,#0x1301      | write string, move cursor
        int     0x10

| ok, we've written the message, now
| we want to load the system (at 0x10000)

        mov     ax,#SYSSEG
        mov     es,ax           | segment of 0x010000
        call    read_it         | 读内核到0x10000
        call    kill_motor      | 杀了软驱!? ^_^

| if the read went well we get current cursor position ans save it for
| posterity.

        mov     ah,#0x03        | read cursor pos
        xor     bh,bh
        int     0x10            | save it in known place, con_init fetches
        mov     [510],dx        | it from 0x90510.

| now we want to move to protected mode ...

        cli                     | no interrupts allowed !

| first we move the system to it's rightful place

        mov     ax,#0x0000
        cld                     | 'direction'=0, movs moves forward
do_move:
        mov     es,ax           | destination segment
        add     ax,#0x1000
        cmp     ax,#0x9000
        jz      end_move
        mov     ds,ax           | source segment
        sub     di,di           | 置零,地址为0x1000:0000
        sub     si,si           | 置零,地址为0x9000:0000
        mov     cx,#0x8000      | cx的作用是计数器
        rep
        movsw
        j       do_move         | 将位于低端0x1000:0000的内核移到内存
                                | 高端0x9000:0000,覆盖了boot.S !?

| then we load the segment descriptors

end_move:

        mov     ax,cs           | right, forgot this at first. didn't work :-)
        mov     ds,ax
        lidt    idt_48          | idt_48和gdt_48都是一个3个word长的数据结构
        lgdt    gdt_48          | 第一个字说明(Global || Interrupt) Descriptor
                                | Table有多长,因为每个Table是四个字长,所以
                                | 可以得出整个DescriptorTable的entries.(见下)
                                | 后两个字指出DT的具体位置.
                                | idt_48是0,0,0;应表示没有中断描述符entries.
                                | gdt_48有256个入口,第一个是个空入口,然后
                                | 定义了一个code段和一个data段.基址都是
                                | 0x00000000, !?那里是什么东西???
                                | *** 0x00000000 != 0x0000:0000 ***

| that was painless, now we enable A20

        call    empty_8042
        mov     al,#0xD1                | command write
        out     #0x64,al
        call    empty_8042
        mov     al,#0xDF                | A20 on
        out     #0x60,al
        call    empty_8042

| well, that went ok, I hope. Now we have to reprogram the interrupts :-(
| we put them right after the intel-reserved hardware interrupts, at
| int 0x20-0x2F. There they won't mess up anything. Sadly IBM really
| messed this up with the original PC, and they haven't been able to
| rectify it afterwards. Thus the bios puts interrupts at 0x08-0x0f,
| which is used for the internal hardware interrupts as well. We just
| have to reprogram the 8259's, and it isn't fun.
| 初始化中断处理器8259i
| 初始化顺序为:         1. 向主8259A写ICW1, 0x20
|                       2. 向第二块8259A写ICW1, 0xA0
|                       3. 向主8259A写ICW2, 0x21
|                       4. 向第二块8259A写ICW2, 0xA1
|                       5. 如果ICW1指示有级联中断处理器,则初始化Master&Slave
|                       (在下例中只有IR2有级联8259A), 0x21, 0xA1
|                       6. 向两块8259写ICW4,指定工作模式.
| 输入了适当的初始化命令之后, 8259已经准备好接收中断请求.
| 现在向他输入工作
| 命令字以规定其工作方式. 8259A共有三个工作命令字,但下例中只用过OCW1.
| OCW1将所有的中断都屏蔽掉, OCW2&OCW3也就没什么意义了.
| ** ICW stands for Initialization Command Word;
|    OCW for Operation Command Word.
1.      mov     al,#0x11
        out     #0x20,al
        .word   0x00eb,0x00eb           | jmp $+2, jmp $+2
2.      out     #0xA0,al                | and to 8259A-2
        .word   0x00eb,0x00eb
3.      mov     al,#0x20                | 向主8259A写入ICW2.
        out     #0x21,al                | 硬件中断入口地址0x20, 并由ICW1

                                        | 得知中断向量长度 = 8 bytes.
        .word   0x00eb,0x00eb
4.      mov     al,#0x28                | start of hardware int's 2 (0x28)
        out     #0xA1,al                | 第二块8259A的中断入口是0x28.
        .word   0x00eb,0x00eb
5.      mov     al,#0x04                | 8259-1 is master
        out     #0x21,al                | Interrupt Request 2有级联处理.

        .word   0x00eb,0x00eb
        mov     al,#0x02                | 8259-2 is slave
        out     #0xA1,al                | 于上面对应,告诉大家我就是IR2对应
                                        | 级联处理器.
        .word   0x00eb,0x00eb
6.      mov     al,#0x01                | 8086 mode for both
        out     #0x21,al
        .word   0x00eb,0x00eb
        out     #0xA1,al

        .word   0x00eb,0x00eb
        mov     al,#0xFF                | mask off all interrupts for now
        out     #0x21,al

        .word   0x00eb,0x00eb
        out     #0xA1,al

| well, that certainly wasn't fun :-(. Hopefully it works, and we don't
| need no steenking BIOS anyway (except for the initial loading :-).
| The BIOS-routine wants lots of unnecessary data, and it's less
| "interesting" anyway. This is how REAL programmers do it.
|
| Well, now's the time to actually move into protected mode. To make
| things as simple as possible, we do no register set-up or anything,
| we let the gnu-compiled 32-bit programs do that. We just jump to
| absolute address 0x00000, in 32-bit protected mode.

        mov     ax,#0x0001      | protected mode (PE) bit
        lmsw    ax              | This is it!
        jmpi    0,8             | jmp offset 0 of segment 8 (cs)

| This routine checks that the keyboard command queue is empty
| No timeout is used - if this hangs there is something wrong with
| the machine, and we probably couldn't proceed anyway.
empty_8042:
        .word   0x00eb,0x00eb
        in      al,#0x64        | 8042 status port
        test    al,#2           | is input buffer full?
        jnz     empty_8042      | yes - loop
        ret

| This routine loads the system at address 0x10000, making sure
| no 64kB boundaries are crossed. We try to load it as fast as
| possible, loading whole tracks whenever we can.
|
| in:   es - starting address segment (normally 0x1000)
|
| This routine has to be recompiled to fit another drive type,
| just change the "sectors" variable at the start of the file
| (originally 18, for a 1.44Mb drive)
|
sread:  .word 1                 | sectors read of current track
head:   .word 0                 | current head
track:  .word 0                 | current track
read_it:
        mov ax,es               | ES当前应0x1000
        test ax,#0x0fff         | 必需确保ES处在64KB段边界上,即0x?000:XXXX.
                                | 要不你就会收到一个"DMA..."什么什么的ERR.
die:    jne die                 | es must be at 64kB boundary
        xor bx,bx               | bx is starting address within segment
rp_read:                        | **** 循环入口处 ****
        mov ax,es
        cmp ax,#ENDSEG          | have we loaded all yet?
        jb ok1_read
        ret
ok1_read:
        mov ax,#sectors         | 1.44M, sectors=18,linux的后续版本
                                | 中已改成由操作系统来探测sectors的值.
        sub ax,sread            | AX内记载需要读的扇区数,初始sread为1,
                                | 即跳过第一道的第一扇区(BOOT区)
        mov cx,ax               |
        shl cx,#9               | CX算出需要读出的扇区的字节数, ax*512.
        add cx,bx               | BX是当前段内偏移.
                                | 下面连续的两个转移指令开始还真让人莫名其妙.
        jnc ok2_read            | 这里先检查当前段内的空间够不够装ax个扇区
                                | cx算出字节数,加上当前偏移试试,够了的话,就
                                | 跳到ok2_read去读吧!
        je ok2_read             | 这么巧的事也有,刚刚够! 读!
                                | 如果到了这里就确认溢出了,看下面的:
        xor ax,ax               | 这段代码我觉得很精巧.
        sub ax,bx               | 它主要目的就是算出如果当前段内空间不够的话,
        shr ax,#9               | 那么反算出剩余空间最多能装多少个扇区,那么
                                | 就读出多少个.(Hint,段内空间是扇区的整数倍)

ok2_read:
        call read_track         | 读取当前磁道.
        mov cx,ax      ----|    | (别忙,这里暂时不关cx什么事!)
        add ax,sread       |    | AX是这次读出的扇区数, sread是该磁道已
                           |    | 读出的扇区,相加更新AX的值.
        cmp ax,#sectors    |    | 该磁道所有的扇区都读出了吗?
        jne ok3_read       |    | 尚未,还不能移到下个磁道!
        mov ax,#1          |
        sub ax,head        |    | head对应软盘来说只能是0,1
        jne ok4_read       |    | 0,1 head都读过了才准往下走!
        inc track          |    | 终于可以读下个磁道了,真累!
ok4_read:                  |
        mov head,ax        |
        xor ax,ax          |
ok3_read:                  |
        mov sread,ax       |    | 如果是由于还没读完所有的磁道?
                           |    | 那么ax记载当前磁道已读出的扇区,更新sread.
                           |    | 如果已读完18个扇区,ax被上一行代码置零.
        shl cx,#9     <----|    | cx记载最近一次读的扇区数,*512算成字节.

        add bx,cx               | bx是缓冲区的偏移.往前移!
        jnc rp_read             | 看看当前段(64K)是不是已经装满了?
                                | 这里是不会超出当前段的,(见上的代码)
                                | 最多也就是刚刚装满. :-)
        mov ax,es               | 装满了!移到下一段!!!
        add ax,#0x1000
        mov es,ax
        xor bx,bx               | 偏移置零!
        jmp rp_read

read_track:
        push ax
        push bx
        push cx
        push dx
        mov dx,track
        mov cx,sread
        inc cx                  | CL的低位0-5指示扇区号
        mov ch,dl               | 磁道号(0-1023)由10位bits组成:CH 8位,CL
2位.
        mov dx,head
        mov dh,dl               | DH=磁头号
        mov dl,#0               | DL=驱动器号,0代表A:, 0x80代表C:
        and dx,#0x0100          | 不明白为什么要再检验一次,也许
                                | 为了确保万无一失. ???
        mov ah,#2               | AX当前的值为sub as, sread, 那么
                                | AL的值,即扇区数为当前剩余未读的sectors.
        int 0x13                | BOIS CALL, ES:BX指示缓冲区位置.
        jc bad_rt               | 出错处理,见下:
        pop dx
        pop cx
        pop bx
        pop ax
        ret
bad_rt: mov ax,#0
        mov dx,#0
        int 0x13                | 软盘复位!
        pop dx
        pop cx
        pop bx
        pop ax
        jmp read_track

/*
* This procedure turns off the floppy drive motor, so
* that we enter the kernel in a known state, and
* don't have to worry about it later.
*/
kill_motor:
        push dx
        mov dx,#0x3f2
        mov al,#0
        outb                    | 向Floppy Controller端口写零,STOP!
        pop dx
        ret

gdt:
        .word   0,0,0,0         | dummy

        .word   0x07FF          | 8Mb - limit=2047 (2048*4096=8Mb)
        .word   0x0000          | base address=0
        .word   0x9A00          | code read/exec
        .word   0x00C0          | granularity=4096, 386

        .word   0x07FF          | 8Mb - limit=2047 (2048*4096=8Mb)
        .word   0x0000          | base address=0
        .word   0x9200          | data read/write
        .word   0x00C0          | granularity=4096, 386

idt_48:
        .word   0                       | idt limit=0
        .word   0,0                     | idt base=0L

gdt_48:
        .word   0x800           | gdt limit=2048, 256 GDT entries
        .word   gdt,0x9         | gdt base = 0X9xxxx

msg1:
        .byte 13,10
        .ascii "Loading system ..."
        .byte 13,10,13,10

.text
endtext:
.data
enddata:
.bss
endbss:

/**
*       黄,你好.上面的代码注释就是我读boot.S的心得. 第一次没搞清楚的SYSSIZE
* 问题已经解决,它是在Makefile在编译时定义的.定义的方法很奇怪,还用到
*       Shell script. 读系统到内存我想我应该是弄清淅了,但后面的386PM和8259A
*       难度就大多了.
*  1)boot在读完system到0x10000之后,又将它这么一移到0x90000
*    岂不是把自己给覆盖了吗?我这么也不理解,我没有调试kernel的工具,不知
*    实际运行时是这样的.你上次说的单机调试的工具地址能再mail给我吗?
*    你能在你的双机上看看是怎样的吗?
*  2)在boot之后,绝对地址0x00000里面
*    到底是什么?(中断向量?!)在整个初始化过程完毕后,系统jump到那里是什么
*     意思?初始的两个GDT也是指向0x00000000.
*  3)8259A的工作原理我主要参看
*    的是清华的<<微机IBM-PC/XT原理及应用>>,周德明.后来我发现Minix的那本
*    书里也有一点东西,还没来的及看.
*    另外多谢你提供的 across reference building tool,我还没用熟,能简单
*    介绍介绍吗? ^_^
*       杜晓明  98.11.17
**/
@@ 1,你搞错了,boot在读完system到0x10000之后,又将它这么一移到0x0。:-)
@@ 2.绝对地址0x00000里面 system.实模式中断不能再用了
@@    !)在整个初始化过程完毕后,系统jump: jmpi    0,8 这是个长跳转 cs=8 eip=0
@@   cs=8不是实模式的段,而是gdt表中第一 (0开始),就是你定义的初始的两个GDT
@@  中的第一项,所以,现在系统跳到绝对0,即head.s的startup
@@ 3.用lxr的across reference building tool先解开后,基本上按INSTLL说明
@@   make install
@@      edit $(安装目录)/http/lxr.conf
@@           baseurl 改为你的url
@@      我是这样设的  http://192.168.1.3/lxr/
@@      同一目录下设.htaccess INSTALL有
@@      配置 httpd server
@@                 httpd.conf   加一行  Alias  /lxr $(安装目录)/http/
@@       cd $(安装目录)/source 产生标识符库 ../bin/genxref  $(kernel source目录)
@@       kernel source: /linux/0.01/....
@@                     /0.10/...
@@    你还可用global  http://zaphod.ethz.ch/linux/
@@    我装过,可是最后装好后没有搜索,不然应该会更好用。?
@@ 4.内核调试我用过gdbstub,但是我发现调试好象的是gdbstub.c程序,而不是内核,只
@@   看到gdbstub.c的原代码,没有内核的原代码,或许有个步骤我没做导致如此.
 
 

本文转自中文Linux论坛