仙一网 - 文献资料 - 医学书籍 - 细胞和分子免疫学

  二、MHC对免疫应答的遗传控制

  人们早已观察到各种不同品系动物的免疫应答是由遗传控制的,如豚鼠对白喉毒素结核菌素的易感性在不同品系间有很大差异人类变态反应性疾病的发生与遗传因素有关。但对这一问题的深入研究主要归功于60年代后免疫化学研究中合成多肽抗原的应用,对H-2的深入了解以及同类系和H-2内重组株小鼠的建立。

  (一)MHC对免疫应答遗传控制研究的基本条件

  1.人工合成多肽抗原 化学合成多肽抗原主要有以下两类:

  (1)合成分枝多肽抗原:它是以线状的多聚赖氨酸(L)联上多聚丙氨酸(A)的侧链,形成A-L骨架结构,然后再在丙氨酸链上偶联不同的氨基酸,形成具有不同抗原特异性的分枝多肽抗原。最常用的是(T,G)-A-L,(H,G)-A-L和(φ,G)-A-L等(图6-14)。抗原特异性由末端氨基酸所决定,侧枝和主干起载体的作用。

图6-13 MHC与胸腺的选择作用

  (2)线状多肽抗原:这是几种氨基酸按不同比例和数量结合而成的线状多肽,具有较强的抗原性,如GLφ等。单种氨基酸组成的均一多肽抗原性很弱,但偶联上半抗原后则是很好的免疫原,例如多聚赖氨酸(PLL)与DNP偶联形成的DNP-PLL被广泛用于豚鼠免疫应答遗传控制的研究。

  2.同类系小鼠(congenic mice)是遗传北景完合相同,只是所需研究的那个基因不同的小鼠。建立同类系小鼠是诺贝尔获得者Snell对免疫遗传学作用出的突出贡献。有了同类系小鼠和人工合成多肽抗原,就可以深入研究免疫应答的基因控制以及与MHC的关系。同类系小鼠的培育的方法见图6-15。

  首先近交系(inbred strain)A品系小鼠与另一个近交系B品系小鼠进行交配,A品系MHC是a/a纯合(homozygous)的,B品系MHC是b/b纯合的。A与B品系杂交的子一代(F1)全部是a/b杂合状态的。然后将F1小鼠与亲本A品系进行回交(backcross),其子代一半为a/a,另一半为a/b,a/b杂合状态小鼠的皮片移植到A品系小鼠后迅速被排斥,而a/a子代小鼠的皮片移植到A品系小鼠后并不迅速被排斥。将通过皮片移植后发生迅速排所鉴定的a/b杂合小鼠又与A品系小鼠进行回交,其子代一半为a/a,另一半为a/b,再用上述皮片移植排斥反应的方法鉴定出a/a或a/b,将a/b杂合不再与A品系小鼠进行回交。如此继续20代后,a/b杂合小b等位基因仍然保留,但原来B品系小鼠中其它的遗传座位都消失了,正如连续稀释(serial dilution)一样,F1小鼠保留了B品系基因的50%,回交后第一代平均只保留了B品系基因的25%,这样经过20次回交后除了保留B品系的MHC等位基因(b)以外,其余B品系的基因(非MHC基因)都消失。也就是说,经过如此20代回交后a/b小鼠,除了第17号染色体上的MHC是a/b杂合以外,其余的遗传背景(除17号染色体MHC以外和其余39对染色体)均与A品系相同。将经过20代回交的a/b小鼠进行品种间杂交(interbreed)或称史妹交配,其子代的MHC基因25%是a/a纯合,25%是b/b纯合,50%是a/b杂合的。其中b/b纯合小鼠皮片移植的A品系小鼠后即发生迅速的排斥。用b/b纯合小鼠进行品种间杂交,培育出一个新的品系即MHC基因位点上与B品系相同,而其它所有的遗传背景与A品系相同,我们可称作这个品系小鼠与A品系是同类系(congenic to strain A),或者叫做在A遗传背景的B MHC。常用同类系小鼠单体型见表6-7。

图6-14 合成分枝多肽抗原示意

  注:(T,G)-A--L:(多聚酪氨酸,多聚谷氨酸)-多聚丙氨酸-多聚赖氨酸

   (H,G)-A--L:(多聚酪氨酸,多聚谷氨酸)-多聚丙氨酸-多聚赖氨酸

   (φ,G)-A--L:(多聚酪氨酸,多聚谷氨酸)-多聚丙氨酸-多聚赖氨酸

   L:L型,D:D型

  3.H-2内重组株 通过不同的同类系杂交,根据交换重组定律,在杂交后代中选择新的H-2内重组体(interH-2recombinants)。不同的重组株在H-2内的一些基因位点具有不同的等位基因,即H-2单体型(haplotype)不同。

  例如品系A,B10.A单体型为a,它是由H-2k和H-2d两个双亲单体型的I-E亚区和S区之间发生交换重组而产生(表6-8)。H-2内重组株(举例)参见表6-9。

表6-7 常用同类系小鼠的单体型(标准品系,type strains)

品系 单体型 K I-A S D
B10(C57BL/10) H-2b b b b b
B57BL/6 H-2b b b b b
DBA/2 H-2d d d d d
Balb/c H-2d d d d d
B10.D2 H-2d d d d d
C3H H-2k k k k k
CBA H-2k k k k k
B10.BR H-2k k k k k

图6-15 同类系小鼠培育的方法

表6-8 A.B10.AH-2内重组株的产生

单体型 K I-A I-E S G D
亲代1 k k k k k k k
亲代2 d d d d d d d
A.B10·A a k k k d d d

表6-9 H-2内重组株(举例)

品系 单体型 双亲单体型 K I区 S G D
A   E 
A.B10.A a k/d k k k d d d
A.AL a1 k/d k k k k k d
C3H.OL o1 d/k d d d k k k
C3H.OH o2 d/k d d d d d k
B10.A(4R) h4 a/b k k b b b b
B10.AM h5 k/b k k k k k b
B10.A(3R) i3 b/a b b k d d d
B10.A(5R) i5 b/a b b k d d d
A.TL t1 s/al s k k k k d
A.Th,B10.S(7R) t2 s/a s s s s s d
BSVS ts s/a2 s s s d d d
B10.M(17R) ag1 s/f k k k d d f
B10.M(11R) ap1 s/f f f f f f d

  (二)Ir基因

  1.免疫应答基因的发现 Benacerraf等(1963)首先证实豚鼠对人工合成抗原PLL(聚-L-赖氨酸)等的抗体应答能力受单个常染色体显性基因(单基因)的控制(表6-10)。实验表明,2和13两个品系豚鼠对不同人工合成抗原的应答能力不同。两个品系杂交的子一代(F1)对三种抗原全部有应答能力,说明应答基因为显性。再将F1和隐性亲本进行回交,所得下一代对抗原的应答表现出孟德尔定律的分离现象,应答与无应答个体呈1:1之比,说明遗传是由单基因控制的。F1代与显性亲本进行回交,下一代中全部对抗原发生应答。Benacerraf将控制免疫应答的基因称为免疫应答基因(immune respones gene ,Ir基因)。具有Ir基因的动物对相应抗原呈高应答者(responder),缺乏核基因者呈无应答或低应答者(non-responder)。

表6-10 豚鼠免疫应答基因的发现

抗原 2 13 (2*13)F1 (2*13)F1*13 (2*13)F1*2
50% 50% 50% 50%
DNP-PLL + - + + - + +
Glutamyl alanine copolymer(GA) + - + + - + +
Glytamyl tyrosine copolymer(CT) - + + + + + -

  注:DNP-PLL:二硝基苯—多聚赖氨酸 GA:谷氨酰丙氨酸多聚体 CT:谷氨酰酪氨酸多聚体

  2.小鼠Ir基因位一地H-2 I区内

  (1)小鼠Ir-1基因与MHC连锁基因:60年代中期,McDevitt和Sela等发现小鼠有类似针对合成分枝多肽(T,G)-A-L抗原的基因,称Ir-1基因,并证明该基因与MHC存在着连锁关系;如C57BL小鼠对(T,G)-A-L有高抗体应答,而CBA小鼠则为低应答;对(H,G)-A-L的反应则CBA小鼠为高应答,而C57BL为低应答。以后又检了一系列对特定抗原高应答、中应答或低应答的小鼠品系(表6-11)。并用回交试验证实小鼠Ir基因为单个常染色体显性遗传(图6-16)。

表6-11 不同品系小鼠对三种人工合成抗原的抗体应答

小鼠品系 H-2 抗体产生应答
单体型 抗(T,G)-A-L 抗(H,G)-A-L 抗(φ,G)-A-L
A/J a
A.BY b
C57BL b
B1,LP b
C3H,SW b
BALB/c d
DBA/2 d
CBA k
C3H/HeJ k
B10.BR k
AKR k
DBA/1 q
SJL s
A.SW s

  (2)Ir-1基因定位于H-2 I区内:70年代初,McDevitt等又利用同类系和H-2内重组系小鼠,将1r-1基因定位于H-2 I区内(表6-12)。

  Milich等(1982)应用同类系小鼠证实对HBsAg a和d决定簇的体液免疫应答也受MHC内的基因所调节。单倍H-2q产生高应答,H-2s.f产生低或无应答,H-2a.b.d.k单倍型为中等应答。进一步用H-2内重组系小鼠的实验表明,控制上述体液免疫应答的基因可能位于K区和I-A亚区。

图6-16 应用回交试验证实小鼠对(多聚苯丙氨酸,多聚谷氨酸)

-多聚丙氨酸-多降赖氨酸[φG)-A-L]应答的Ir基因为单个常染色体显性遗传

表6-12 位H-2 I区内Ir基因位置(举例)

抗原 Ir基因 亚区位置 H-2I区以外
I-A I-E 的影响基因
(T,G)-A-L Ir-1A +

+(Ig)

(H,G)-A-L Ir-(H,G)-A-L    +
GL Pro Ir-GLPro    +
GL Leu Ir-GL leu

+(β)

+(α)
GL Phe Ir-GL Phe +(β) +(α)

  注:T酪氨酸  G-谷氨酸  A-丙氨酸

   L赖氨酸   H-组氨酸  Pro-脯氨酸

   Leu-亮氨酸        Phe-苯丙氨酸

  (3)H-2对DHR的遗传控制:对人工合成抗原诱导的迟发型超敏应答(DHR)同样受MHC的遗传控制。H-2a.b.d.f.j.k.r.u.v单倍单倍型小鼠对多聚体GAT(谷氨酸60-丙氨酸90-酪氨酸10)的刺激表现为DHR应答品系(R),H-2n.p.q.s单倍型属于无应答品系(NR)。R品系与NR品系杂交,F1为R品系,F1与NR回交,后代1/2为R,1/2为NR,符合单个常染色体显性遗传的规律。DHR可以通过致敏T细胞传递给同基因小鼠,而不能传递给不同基因之小鼠,DHR也可传递给有一个单体型相同之小鼠,如杂交子一代,但超敏反应程度介于前两者之间。杂交子一代的致敏T细胞亦可把DHR传递给亲代。Miller等又进一步证明,对GAT迟发型超敏应答的补动传递不要求供体与受体基因型完全相同,而只有I-A亚区相同。

  3.人的免疫应答基因  胡蜀山等(1985)请用3H-TdR法,以体外诱导淋巴细胞增殖刺激指数为指标,发现在无关志愿者中对(H,G)-A-L、(T、G)-A-L、(Phe、G)-A-L、GLPhe和GAT抗原应答的百分率分别为64%、54%、30%、36%和76%。通过家系调查表明:(1)人类对人工合成抗原泊应答也符合孟德尔单染色体显性遗传的规律;(2)控制(T、G)-A-L和(H,G)-A-L和Ir基因是不同的;(3)通过HLA内重组家系的HLA抗原的分析,提示控制(T、G)-A-L和(H、G)-A-L的Ir基因Ir-TGAL和Ir-HGAL位于HLA-A与B位点之间而与D/DR无关。

  Ir基因与MHC连锁的现象,除豚鼠、小鼠和人外,也见于大鼠、恒河猴等多种动物,表明这种现象具有普遍的生物学意义。

  4.免疫应答基因的作用模式  对某些抗原不起应答或呈低免疫应答,可能是由于Ir基因缺陷,Ir基因所编码的Ia抗原不能与该抗原结合,或对抗原的提呈能力低,不能激活Th,或只能引起低免疫应答。有关Ir基因通过其基因产物Ia抗原在Mφ与Th间传递抗原的水平上起作用的模式主要有Benacerraf(1978)提出的决定基选择模型(determinant selection model)(图6-17),该模式认为的Mφ表面的Ir基因产物有数量不限的特异性结合点,能特异地与一定的氨基酸顺序结合,这些特异的氨基酸顺序约由3~4个氨基酸组成,使一个复杂的外来抗原物。T细胞抗原受体(TCR)只能识别复合物分子才发生免疫应答反应。如果某个外来抗原结构中不具备这种特定的氨基酸顺序,或Mφ表面Ir基因产物不能与外来抗原特定的决定簇结合,都不能被TCR所识别,表现出对这种抗原的无应答状态。

  5.Is基因和Ts细胞 Debre(1975)发现GT抗原可在某些小鼠体内诱导Ts细胞而抑制对GT-MBSA(甲基化的牛血清白蛋白)的免疫应答。这种控制抑制诱导的基因是显性遗传的,与H-2基因复合体有关。为了与位于H-2的Ir基因相区别,Debre等称之为Is基因。开始有人认为Is基因位于I-J亚区,最近的研究表明,Is基因可能位于I-A亚区内,而目前I-J亚区并未得到证实。某些小鼠对一些抗原(如CT,GAT)的无应答性是由于这些抗原诱导产生了Ts细胞的结果,小鼠接受这些抗原诱导的能力受Is基因控制。如选择性地除去Ts细胞后,无应答者可变不应答者。

图6-17 决定基选择模型

  免疫应答基因已逐渐超出原来的概念:一是在MHC内除与Ⅱ类基因有关外,还与I类基因有关,如流感病与HLA-B7亲和性高,DNFB与HLA-A2亲和性高,HLA-B34、B22者对风疹疫苗接种所产生的抗体效价较高,而HLA-B16者对流感疫苗无免疫应答。杂合个体比纯合个体有更多可能性对多种抗原发生应答,即有更强的抗感染能力,称之为“杂交优势”。二是Ir基因还可能与非MHC基因相连锁,如免疫球蛋白VH基因、X染色体以及其它基因等。